Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38445180

RESUMO

Purpose: An integrated magnetic resonance scanner and linear accelerator (MR-linac) was implemented with daily online adaptive radiation therapy (ART). This study evaluated patient-reported experiences with their overall hospital care as well as treatment in the MR-linac environment. Methods: Patients pre-screened for MR eligibility and claustrophobia were referred to simulation on a 1.5 T MR-linac. Patient-reported experience measures were captured using two validated surveys. The 15-item MR-anxiety questionnaire (MR-AQ) was administered immediately after the first treatment to rate MR-related anxiety and relaxation. The 40-item satisfaction with cancer care questionnaire rating doctors, radiation therapists, the services and care organization and their outpatient experience was administered immediately after the last treatment using five-point Likert responses. Results were analyzed using descriptive statistics. Results: 205 patients were included in this analysis. Multiple sites were treated across the pelvis and abdomen with a median treatment time per fraction of 46 and 66 min respectively. Patients rated MR-related anxiety as "not at all" (87%), "somewhat" (11%), "moderately" (1%) and "very much so" (1%). Positive satisfaction responses ranged from 78 to 100% (median 93%) across all items. All radiation therapist-specific items were rated positively as 96-100%. The five lowest rated items (range 78-85%) were related to general provision of information, coordination, and communication. Overall hospital care was rated positively at 99%. Conclusion: In this large, single-institution prospective cohort, all patients had low MR-related anxiety and completed treatment as planned despite lengthy ART treatments with the MR-linac. Patients overall were highly satisfied with their cancer care involving ART using an MR-linac.

2.
Cancers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37345175

RESUMO

PURPOSE: To retrospectively review the clinical outcomes of patients with metastatic breast cancer (MBCa) following liver directed ablative intent radiotherapy (RT). METHODS: Demographics, disease and treatment characteristics of patients with MBCa who received liver metastasis (LM) directed ablative RT between 2004-2020 were analysed. The primary outcome was local control (LC), secondary outcomes included overall survival (OS) and progression-free survival (PFS) analyzed by univariate (UVA) and multi-variable analysis (MVA). RESULTS: Thirty MBCa patients with 50 LM treated with 5-10 fraction RT were identified. Median follow-up was 14.6 (range 0.9-156.2) months. Class of metastatic disease was described as induced (12 patients, 40%), repeat (15 patients, 50%) and de novo (three patients, 10%). Median size of treated LM was 3.1 cm (range 1-8.8 cm) and median biologically effective dose delivered was 122 (Q1-Q3; 98-174) Gy3. One-year LC rate was 100%. One year and two-year survival was 89% and 63%, respectively, with size of treated LM predictive of OS (HR 1.35, p = 0.023) on UVA. Patients with induced OMD had a significantly higher rate of progression (HR 4.77, p = 0.01) on UVA, trending to significance on MVA (HR 3.23, p = 0.051). CONCLUSIONS: Hypo-fractionated ablative liver RT in patients with MBCa provides safe, tolerable treatment with excellent LC.

3.
Magn Reson Med ; 88(6): 2592-2608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36128894

RESUMO

Radiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.


Assuntos
Neoplasias , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Cancers (Basel) ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35158984

RESUMO

PURPOSE: To describe a comprehensive workflow for MRI-guided online adaptive stereotactic body radiation therapy (SBRT) specific to upper gastrointestinal cancer patients with abdominal compression on a 1.5T MR-Linac system. Additionally, we discuss the workflow's clinical feasibility and early experience in the case of 16 liver and pancreas patients. METHODS: Eleven patients with liver cancer and five patients with pancreas cancer were treated with online adaptive MRI-guidance under abdominal compression. Two liver patients received single-fraction treatments; the remainder plus all pancreas cancer patients received five fractions. A total of 65 treatment sessions were investigated to provide analytics relevant to the online adaptive processes. The quantification of target and organ motion as well as definition and validation of internal target volume (ITV) margins were performed via multi-contrast imaging provided by three different 2D cine sequences. The plan generation was driven by full re-optimization strategies and using T2-weighted 3D image series acquired by means of a respiratory-triggered exhale phase or a time-averaged imaging protocol. As a pre-requisite for the clinical development of the procedure, the image quality was thoroughly investigated via phantom measurements and numerical simulations specific to upper abdominal sites. The delivery of the online adaptive treatments was facilitated by real-time monitoring with 2D cine imaging. RESULTS: Liver 1-fraction and 5-fraction online adaptive session time were on average 80 and 67.5 min, respectively. The total session length varied between 70-90 min for a single fraction and 55-90 min for five fractions. The pancreas sessions were 54-85 min long with an average session time of 68.2 min. Target visualization on the 2D cine image data varied per patient, with at least one of the 2D cine sequences providing sufficient contrast to confidently identify its location and confirm reproducibility of ITV margins. The mean/range of absolute and relative dose values for all treatment sessions evaluated with ArcCheck were 90.6/80.9-96.1% and 99/95.4-100%, respectively. CONCLUSION: MR-guidance is feasible for liver and pancreas tumors when abdominal compression is used to reduce organ motion, improve imaging quality, and achieve a robust intra- and inter-fraction patient setup. However, the treatment length is significantly longer than for the conventional linac, and patient compliance is paramount for the successful completion of the treatment. Opportunities for reducing the online adaptive session time should be explored. As the next steps, dose-of-the-day and dose accumulation analysis and tools are needed to enhance the workflow and to help further refine the online re-planning processes.

5.
J Appl Clin Med Phys ; 22(2): 90-97, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33449447

RESUMO

PURPOSE: Abdominal compression can minimize breathing motion in stereotactic radiotherapy, though it may impact the positioning of dose-limiting normal tissues. This study quantified the reproducibility of abdominal normal tissues and respiratory motion with the use of an abdominal compression device using MR imaging. METHODS: Twenty healthy volunteers had repeat MR over 3 days under an abdominal compression plate device. Normal tissues were delineated on daily axial T2-weighted MR and compared on days 2 and 3 relative to day 1, after adjusting for baseline shifts relative to bony anatomy. Inter-fraction organ deformation was computed using deformable registration of axial T2 images. Deformation > 5 mm was assumed to be clinically relevant. Inter-fraction respiratory amplitude changes and intra-fraction baseline drifts during imaging were quantified on daily orthogonal cine-MR (70 s each), and changes > 3 mm were assumed to be relevant. RESULTS: On axial MR, the mean inter-fraction normal tissue deformation was > 5 mm for all organs (range 5.1-13.4 mm). Inter-fraction compression device misplacements > 5 mm and changes in stomach volume > 50% occurred at a rate of 93% and 38%, respectively, in one or more directions and were associated with larger adjacent organ deformation, in particular for the duodenum. On cine-MR, inter-fraction amplitude changes > 3 mm on day 2 and 3 relative to day 1 occurred at a rate of < 12.5% (mean superior-inferior change was 1.6 mm). Intra-fraction baseline drifts > 3 mm during any cine-MR acquisition occurred at a rate of 23% (mean superior-inferior changes was 2.4 mm). CONCLUSIONS: Respiratory motion under abdominal compression is reproducible in most subjects within 3 mm. However, inter-fraction deformations greater than 5 mm in normal tissues were common and larger than inter- and intra-fraction respiratory changes. Deformations were driven mostly by variable stomach contents and device positioning. The magnitude of this motion may impact normal tissue dosimetry during stereotactic radiotherapy.


Assuntos
Radiocirurgia , Respiração , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
6.
Cureus ; 11(6): e5047, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31501738

RESUMO

We present a case of locally advanced pancreatic cancer with duodenal invasion treated with consolidative chemoradiation, where extensive unpredictable interfraction motion was observed. Initially, two attempts were made to treat with volumetric modulated arc therapy technique. However, due to substantial interfractional motion of the pancreatic head mass relative to the regional nodal areas, the patient was eventually replanned and treated with a four-field box technique. This case highlights the difficulty in delivering conformal radiation to the pancreas and quantifies the movement of the target, the adjacent biliary stent, and regional nodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...